

PRELIMINARY PRODUCT DATA SHEET

AMBERLITE IRN99 is a nuclear grade, gel type, strong acid cation exchange resin with a combination of very high capacity and oxidative stability that enables a completely new level of performance in nuclear power applications. It is sold in the fully regenerated Hydrogen form and intended for use in non-regenerable single bed or mixed bed nuclear systems which demand the ultimate in effluent purity, operating capacity, and resin life. The particle size of Amberlite IRN99 is specifically designed to give an optimized balance of pressure drop, exchange kinetics, and resistance to separation from the anion exchange resin, Amberlite IRN78, when used in a mixed bed.

In BWR condensate polishing, Amberlite IRN99 can help to achieve the lowest possible reactor water sulfate levels. The exceptionally high DVB crosslinker level of Amberlite IRN99 gives it the best oxidative stability of any gel cation resin available, thus minimizing the release of sulfonic acid leachables. Also Amberlite IRN99 is made at a particle size which reduces the chance of creating a separated cation

resin layer at the bottom on the mixed bed service vessel.

The very high total capacity of Amberlite IRN99, typically 2.5 eq/L, delivers another important benefit, not only in BWR condensate polishing, but also in other nuclear applications such as PWR steam generator blowdown treatment, PWR primary system CVCS resin beds, and even radioactive waste demineralizers. The high total cation exchange capacity can produce a 15 to 30% increase in operating throughput. Since the nuclear grade resins from all these applications are generally disposed of as rad waste, high capacity and long resin bed life are critical to minimizing rad waste disposal cost and volume. For most users, rad waste disposal cost will often exceed resin purchase cost, so high resin capacity directly translates into savings in these nonregenerable nuclear applications. Furthermore, longer bed life means fewer bed change-outs, less work, less resin handling, and less chance for radiation exposure.

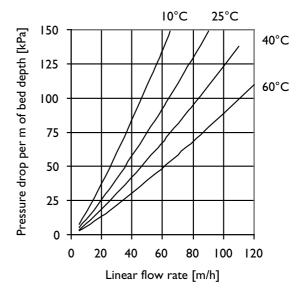
PDS 0647 A - July 01 - 1/2

PROPERTIES

Matrix	Polystyrene divinylbenzene copolymer	
Functional groups		
Physical gorm		
Conversion to H ⁺ form		
Total exchange capacity		
Moisture holding capacity		
Shipping weight	840 g/L	
Fines content		
Coarse beads	> 0.850 mm : 1.0% maximum	
Uniformity coefficient	≤ 1.2	
Friability average		
Friability > 200 g/bead		
Na		
Al		
Fe	50 mg/kg dry, maximum	
Cu	10 mg/kg dry, maximum	
Heavy metals as Pb	10 mg/kg dry, maximum	

SUGGESTED OPERATING CONDITIONS

Operating temperature	15 to $60~^{\circ}\mathrm{C}$
Minimum bed depth	900 mm
Service flow rate for condensate polishing (LV)	120 m/h
Service flow rate other applications (SV)	8 to 50 BV/h


©2001 Rohm and Haas Company

HYDRAULIC CHARACTERISTICS

The figure shows the pressure drop data for Amberlite IRN99 as a single component resin, as a function of service flow rate and water temperature. Pressure drop data are for clean, classified beds which have not accumulated solids during the service run. If the bed accumulates solids, the pressure drop would increase. The pressure drop of a mixed bed can be approximated by summing the component pressure drops.

LIMITS OF USE

AMBERLITE IRN99 is suitable for industrial uses. For other specific applications such as pharmaceutical, food processing or potable water applications, it is recommended that all potential users seek advice from Rohm and Haas in order to determine the best resin choice and optimum operating conditions.

All our products are produced in ISO 9002 certified manufacturing facilities.

Rohm and Haas/Ion Exchange Resins - Philadelphia, PA - Tel. (800) RH AMBER - Fax: (215) 537-4157 Rohm and Haas/Ion Exchange Resins - 75579 Paris Cedex 12 - Tel. (33) 1 40 02 50 00 - Fax : 1 43 45 28 19

WEB SITE: http://www.rohmhaas.com/ionexchange

AMBERLITE is a trademark of Rohm and Haas Company, Philadelphia, U.S.A.

Ion exchange resins and polymeric adsorbents, as produced, contain by-products resulting from the manufacturing process. The user must determine the extent to which organic by-products must be removed for any particular use and establish techniques to assure that the appropriate level of purity is achieved for that use. The user must ensure compliance with all prudent safety standards and regulatory requirements governing the application. Except where specifically otherwise stated, Rohm and Haas Company does not recommend its ion exchange resins or polymeric adsorbents, as supplied, as being suitable or appropriately pure for any particular use. Consult your Rohm and Haas technical representative for further information. Acidic and basic regenerant solutions are corrosive and should be handled in a manner that will prevent eye and skin contact. Nitric acid and other strong oxidising agents can cause explosive type reactions when mixed with Ion Exchange resins. Proper design of process equipment to prevent rapid buildup of pressure is necessary if use of an oxidising agent such as nitric acid is contemplated. Before using strong oxidising agents in contact with Ion Exchange Resins, consult sources knowledgeable in the handling of these materials.

Rohm and Haas Company makes no warranties either expressed or implied as to the accuracy or appropriateness of this data and expressly excludes any liability upon Rohm and Haas arising out of its use. We recommend that the prospective users determine for themselves the suitability of Rohm and Haas materials and suggestions for any use prior to their adoption. Suggestions for uses of our products of the inclusion of descriptive material from patents and the citation of specific patents in this publication should not be understood as recommending the use of our products in violation of any patent or as permission or license to use any patents of the Rohm and Haas Company. Material Safety Data Sheets outlining the hazards and handling methods for our products are available on request.

©2001 Rohm and Haas Company PDS 0647 A - July 01 - 2/2